您的位置 首页 知识

立体几何有哪些 立体几何体

立体几何有哪些? 立体几何图形 可以分为以下几类: (1)柱体:包括圆柱和棱柱。棱柱又可分为直棱柱和斜棱柱,按…

立体几何有哪些?

立体几何图形

可以分为以下几类:

(1)柱体:包括圆柱和棱柱。棱柱又可分为直棱柱和斜棱柱,按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;棱柱体积都等于底面面积乘以高,即V=SH;

(2)锥体:包括圆锥体和棱锥体,棱锥分为三棱锥、四棱锥及N棱锥;棱锥体积为

;

(3)旋转体:包括圆柱、圆台、圆锥、球、球冠、弓环、圆环、堤环、扇环、枣核形等。其表面积公式为:

,体积公式为:

(其中L是基图的周长,S是基图的面积,R是重心到轴的距离)

(4)截面体:包括棱台、圆台、斜截圆柱、斜截棱柱、斜截圆锥、球冠、球缺等。其表面积和体积一般都是根据图形加减解答。

平面几何图形

可分为以下几类:

(1)圆形:包括正圆,椭圆,多焦点圆——卵圆。

(2)多边形:三角形、四边形、五边形等。

(3)弓形:优弧弓、劣弧弓、抛物线弓等。

(4)多弧形:月牙形、谷粒形、太极形、葫芦形等。

立体几何公式有哪些?

立体几何公式主要有:

棱柱表面积A=L*H+2*S,体积V=S*H(L–底面周长,H–柱高,S–底面面积)

圆柱表面积A=L*H+2*S=2π*R*H+2π*R^2,体积V=S*H=π*R^2*H(L–底面周长,H–柱高,S–底面面积,R–底面圆半径)

球体表面积A=4π*R^2,体积V=4/3π*R^3(R-球体半径)

圆锥表面积A=1/2*s*L+π*R^2,体积V=1/3*S*H=1/3π*R^2*H(s–圆锥母线长,L–底面周长,R–底面圆半径,H–圆锥高)

棱锥表面积A=1/2*s*L+S,体积V=1/3*S*H(s–侧面三角形的高,L–底面周长,S–底面面积,H–棱锥高)

谁发明的立体几何?

欧几里德

约在公元前300年,古希腊数学家欧几里德建立了角和空间中距离之间联系的法则,现称为欧几里德几何。欧几里德首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里德的公理已被编排到叫做二维或三维欧几里德空间的抽象数学空间中。

这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做?n?维欧几里德空间(甚至简称??n维空间)或有限维实内积空间。

这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备),希尔伯特空间在高等代数教科书中也被称为欧几里德空间。为了开发更高维的欧几里德空间,空间的性质必须严密地表达并被扩展到任意维度。尽管这样做的结果导致数学非常抽象,但却捕获了熟悉的欧几里德空间的根本本质,即平面性。还另存在其他种类的空间,例如球面则非欧几里德空间,相对论所描述的四维时空在重力出现的时候也不是欧几里德空间。

如何学好立体几何?感觉立体几何学不懂啊?

一般说,平面几何是立体几何的基础。没有这个基础,学立体几何就难了。如果有了这个基础,再加上清晰的空间概念。要掌握立体几何,是很轻松的。 仅是对当年学习的回顾和总结:

1。平面几何基础要扎实。感到模糊的,赶紧搞清;

2。注意立体概念的培养和建立;

3。重点掌握立体几何中特色的部分,如:空间直线的垂直,它们的距离,三垂线定理等;

4。熟读定理和公式,尤其对各类立体形的计算。

5。解题时,把立体几何分化,引导成平面几何来解。

立体几何好难学啊,怎么办?

我刚刚学完立体几何,不是很难。

首先是要习惯从立体的角度看待问题,把立体问题平面化,然后再运用平面几何知识解题。关键是要掌握立体几何定理,比如说空间直线、直线和平面的关系、平面和平面的关系、简单的几何体,下面是我抄来的定理,是我们书上所有的定理了,掌握了它们,做题就容易多了。

基本概念

公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3: 过不在同一条直线上的三个点,有且只有一个平面。

推论1: 经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面

1、按是否共面可分为两类:

(1)共面: 平行、 相交

(2)异面:

异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为 ( 0°,90° ) esp.空间向量法

两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法

2、若从有无公共点的角度看可分为两类:

(1)有且仅有一个公共点——相交直线;(2)没有公共点—— 平行或异面

直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行

①直线在平面内——有无数个公共点

②直线和平面相交——有且只有一个公共点

直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

esp.空间向量法(找平面的法向量)

规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角

由此得直线和平面所成角的取值范围为 [0°,90°]

最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角

三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直

esp.直线和平面垂直

直线和平面垂直的定义:如果一条直线a和一个平面 内的任意一条直线都垂直,我们就说直线a和平面 互相垂直.直线a叫做平面 的垂线,平面 叫做直线a的垂面。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

③直线和平面平行——没有公共点

直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

两个平面的位置关系:

(1)两个平面互相平行的定义:空间两平面没有公共点

(2)两个平面的位置关系:

两个平面平行—–没有公共点; 两个平面相交—–有一条公共直线。

a、平行

两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

b、相交

二面角

(1) 半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(2) 二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为 [0°,180°]

(3) 二面角的棱:这一条直线叫做二面角的棱。

(4) 二面角的面:这两个半平面叫做二面角的面。

(5) 二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(6) 直二面角:平面角是直角的二面角叫做直二面角。

esp. 两平面垂直

两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为 ⊥

两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

Attention:

二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)

多面体

棱柱

棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

棱柱的性质

(1)侧棱都相等,侧面是平行四边形

(2)两个底面与平行于底面的截面是全等的多边形

(3)过不相邻的两条侧棱的截面(对角面)是平行四边形

棱锥

棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

棱锥的性质:

(1) 侧棱交于一点。侧面都是三角形

(2) 平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

正棱锥

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3) 多个特殊的直角三角形

esp: a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

Attention:

1、 注意建立空间直角坐标系

2、 空间向量也可在无坐标系的情况下应用

多面体欧拉公式:V(角)+F(面)-E(棱)=2

正多面体只有五种:正四、六、八、十二、二十面体。

attention:

1、 球与球面积的区别

2、 经度(面面角)与纬度(线面角)

3、 球的表面积及体积公式

4、 球内两平行平面间距离的多解性

就是这些了,你要放松心态,专心研究,多做题多练习,就一定能把它拿下!

怎么学好立体几何?

学好立体几何要建立空间观念,提高空间想象力。 从认识平面图形到认识立体图形是一次飞跃,要有一个过程。有的同学自制一些空间几何模型并反复观察,这有益于建立空间观念,是个好办法。

有的同学有空就对一些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,这对于建立空间观念也是好方法。

拓展资料:数学上,立体几何一般作为平面几何的后续课程,是三维欧氏空间的几何的传统名称——因为实际上这大致就是人们生活的空间。立体测绘(Stereometry)处理不同形体的体积的测量问题:圆柱,圆锥, 锥台, 球, 棱柱, 楔, 瓶盖等等。

怎样提高数学立体几何感?

面对新的课程,新的知识,新的学习方法很多学生多会感到无所适从,尤其是在高中立体几何方面颇感头疼。中学阶段我们接触的是一些简单的平面几何内容,学生在这一阶段并没有建立起比较强的空间感,所以学起来比较吃力。然而立体几何在历年的高考中有两到三道小题,必有一道大题。虽然分值比重不是特别大,但是起着举足轻重的作用。下面就如何学好立体几何谈几点建议。浅析高中学习方法—立体几何步骤/方法  一、立足课本,夯实基础  直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。(这个定理对今后学习线面垂直以及二面角的平面角的作法非常重要)定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处:  (1)深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。  (2)培养空间想象力。  (3)得出一些解题方面的启示。  在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,(我要求学生用手里的书本当平面,笔作直线)这样亲自实践可以帮助提高空间想象力。对后面的学习也打下了很好的基础。浅析高中学习方法—立体几何  二、培养空间想象力  从认识平面图形到认识立体图形是一次飞跃,要有一个过程。有的同学自制一些空间几何模型并反复观察,这有益于建立空间观念,是个好办法。有的同学有空就对一些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,这对于建立空间观念也是好方法。  建立空间观念要做到:重视看图能力的培养:对于一个几何体,可从不同的角度去观察,可以是俯视、仰视、侧视、斜视,体会不同的感觉,以开拓空间视野,培养空间感。加强画图能力的培养:掌握基本图形的画法;如异面直线的几种画法、二面角的几种画法等等;对线面的位置关系,所成的角,所有的定理、公理都要画出其图形,而且要画出具有较强的立体感,除此之外,还要体会到用语言叙述的图形,画哪一个面在水平面上,产生的视觉完全不同,往往从一个方向上看不清的图形,从另方向上可能一目了然。加强认图能力的培养:对立体几何题,既要由复杂的几何图形体看出基本图形,如点、线、面的位置关系;又要从点、线、面的位置关系想到复杂的几何图形,既要看到所画出的图形,又要想到未画出的部分。能实现这一些,可使有些问题一眼看穿。  此外,多用图表示概念和定理,多在头脑中“证明”定理和构造定理的“图”,对于建立空间观念也是很有帮助的。浅析高中学习方法—立体几何  三、建立数学模型  新课程标准中多次提到“数学模型”一词,目的是进一步加强数学与现实世界的联系。数学模型是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的描述。数学模型的形式是多样的,它们可以是几何图形,也可以是方程式,函数解析式等等。实际问题越复杂,相应的数学模型也越复杂。  从形状的角度反映现实世界的物体时,经过抽象得到的空间几何体就是现实世界物体的几何模型。由于立体几何学习的知识内容与学生的联系非常密切,空间几何体是很多物体的几何模型,这些模型可以描述现实世界中的许多物体。他们直观、具体、对培养大家的几何直观能力有很大的帮助。空间几何体,特别是长方体,其中的棱与棱、棱与面、面与面之间的位置关系,是研究直线与直线、直线与平面、平面与平面位置关系的直观载体。学习时,一方面要注意从实际出发,把学习的知识与周围的实物联系起来,另一方面,也要注意经历从现实的生活抽象空间图形的过程,注重探索空间图形的位置关系,归纳、概括它们的判定定理和性质定理。  四、逐渐提高逻辑论证能力  立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出。浅析高中学习方法—立体几何  五、“转化”思想的应用  解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:  1.两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。  2.异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。  3.面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。  4.三垂线定理可以把平面内的两条直线垂直转化为空间的两条直线垂直,而三垂线逆定理可以把空间的两条直线垂直转化为平面内的两条直线垂直。  以上这些都是数学思想中转化思想的应用,通过转化可以使问题得以大大简化。  六、总结规律,规范训练  立体几何解题过程中,常有明显的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换。不断总结,才能不断高。  还要注重规范训练,高考中反映的这方面的问题十分严重,不少考生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。这就要求我们在平时养成良好的答题习惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。对于即将参加高考的同学来说,考试的每一分都是重要的,在“按步给分”的原则下,从平时的每一道题开始培养这种规范性的好处是很明显的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。浅析高中学习方法—立体几何  七、借助向量这个有用的工具  在学习过程中,用传统的方法不太好做的题目,抓住好本质,建立空间直角坐标系,借助向量这个有用的工具,证明垂直,平行,解决夹角,线面角,二面角等问题就非常容易.  高考中还十分重视解题过程表述的正确与严谨。同学们对“作”、“证”、“算”三个环节往往头轻脚重,对图形构成交代不清楚,造成逻辑上错误,对需要严格论证的往往没有表达出来,只算结果。这些在复习中都应该引起注意。在传统的逻辑推理方法中的基本步骤是:“一作,二证明,三求”;在用向量代数法时,必须按照“一建系,二求点的坐标,三求向量的坐标,四运用向量公式求解”;如在证明线面垂直时,证明线线垂直时,容易只证明与平面内一条直线垂直就下结论,这里应强调证明两条相交直线,缺一不可;用空间向量解决问题时,需要建立坐标系,一定要说清楚;用三垂线定理作二面角的平面角时,一定得点明斜线在平面上射影;书写解题过程的最后都必须写结题语。在解题中,要书写规范,如用平行四边形ABCD表示平面时,可以写成平面AC,但不可以把平面两字省略掉;要写出解题根据,不论对于计算题还是证明题都应该如此,不能想当然或全凭直观;对于文字证明题,要写已知和求证,要画图;用定理时,必须把题目满足定理的条件逐一交代清楚,自己心中有数而不把它写出来是不行的。  八、培养两种意识  特殊化意识。许多线面关系的问题要特别注意它们的特殊位置关系,在一些计算问题中,一般位置和特殊位置的答案是不变的,从特殊中寻找快捷的解题思路。要培养这种意识,以提高解题速度。有时,由特殊图形的关系可引出一般在关系。  运动的观点。平移不改变角的大小,在立体几何中,所有角的求解都可做平行线来解决,这样可将不相交的线的夹角转化为相交线的夹角;直线不能移动,但其方向向量可以按需要任意平移。  在平时的学习过程中,对于证明过的一些典型命题,可以把其作为结论记下来。利用这些结论可以很快地求出一些运算起来很繁琐的题目,尤其是在求解选择或填空题时更为方便。对于一些解答题虽然不能直接应用这些结论,但其也会帮助我们打开解题思路,进而求解出答案。  我相信,如果在学习过程中做到了以上八点,那么任何题目也会迎刃而解。

立体几何知识点?

1.直线在平面内的判定(1)利用公理1:一直线上不重合的两点在平面内,则这条直线在平面内.(2)若两个平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若α⊥β,A∈α,AB⊥β,则AB∈α(3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面内,即若A∈a,a⊥b,A∈α,b⊥α,则a∈α.(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若P∈α,P∈β,β不平行α,P∈a,a∥α,则a∈β.(5)如果一条直线与一个平面平行,那么过这个平面内一点与这条直线平行的直线必在这个平面内,即若a包含于α,A∈α,A∈b,b∥a,则b包含于α.2.存在性和唯一性定理(1)过直线外一点与这条直线平行的直线有且只有一条;(2)过一点与已知平面垂直的直线有且只有一条;(3)过平面外一点与这个平面平行的平面有且只有一个;(4)与两条异面直线都垂直相交的直线有且只有一条;(5)过一点与已知直线垂直的平面有且只有一个;(6)过平面的一条斜线且与该平面垂直的平面有且只有一个;(7)过两条异面直线中的一条而与另一条平行的平面有且只有一个;(8)过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.3.射影及有关性质(1)点在平面上的射影:自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点.(2)直线在平面上的射影:自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.(3)图形在平面上的射影:一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时,射影是一条线段;当图形所在平面不与射影面垂直时,射影仍是一个图形.(4)射影的有关性质:从平面外一点向这个平面所引的垂线段和斜线段中:(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;(ii)相等的斜线段的射影相等,较长的斜线段的射影也较长;(iii)垂线段比任何一条斜线段都短.4.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.异面直线所成的角(1)定义:a、b是两条异面直线,经过空间任意一点O,分别引直线a′a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.(2)取值范围:0°<θ≤90°.(3)求解方法根据定义,通过平移,找到异面直线所成的角θ;解含有θ的三角形,求出角θ的大小.5.直线和平面所成的角(1)定义 和平面所成的角有三种:(i)垂线 面所成的角 的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.(ii)垂线与平面所成的角 直线垂直于平面,则它们所成的角是直角.(iii)一条直线和平面平行,或在平面内,则它们所成的角是0°的角.(2)取值范围0°≤θ≤90°(3)求解方法作出斜线在平面上的射影,找到斜线与平面所成的角θ.解含θ的三角形,求出其大小.最小角定理斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角,亦可说,斜线和平面所成的角不大于斜线与平面内任何直线所成的角.6.二面角及二面角的平面角(1)半平面 直线把平面分成两个部分,每一部分都叫做半平面.(2)二面角 条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.若两个平面相交,则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是0°<θ≤180°(3)二面角的平面角以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.如图,PCD是二面角α-AB-β的平面角.平面角PCD的大小与顶点C在棱AB上的位置无关.二面角的平面角具有下列性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB平面PCD.(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCDα,平面PCDβ.③找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法(iii)三垂线法()根据特殊图形的性质(4)求二面角大小的常见方法先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.利用面积射影定理S′=S·cosα其中S为二面角一个面内平面图形的面积,S′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小.利用异面直线上两点间的距离公式求二面角的大小.7.空间的各种距离点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法:1)直接利用定义求找到(或作出)表示距离的线段;抓住线段(所求距离)所在三角形解之.2)利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离.3)体积法其步骤是:在平面内选取适当三点,和已知点构成三棱锥;求出此三棱锥的体积V和所取三点构成三角形的面积S;由V=S·h,求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.4)转化法将点到平面的距离转化为(平行)直线与平面的距离来求.8.直线和平面的距离(1)定义一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.(2)求线面距离常用的方法直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.将线面距离转化为点面距离,然后运用解三角形或体积法求解之.作辅助垂直平面,把求线面距离转化为求点线距离.9.平行平面的距离(1)定义 个平行平面同时垂直的直线,叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.(2)求平行平面距离常用的方法直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.把面面平行距离转化为线面平行距离,再转化为线线平行距离,最后转化为点线(面)距离,通过解三角形或体积法求解之.10.异面直线的距离(1)定义 条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.任何两条确定的异面直线都存在唯一的公垂线段.(2)求两条异面直线的距离常用的方法定义法 题目所给的条件,找出(或作出)两条异面直线的公垂线段,再根据有关定理、性质求出公垂线段的长.此法一般多用于两异面直线互相垂直的情形.转化法 为以下两种形式:线面距离面面距离③等体积法④最值法⑤射影法⑥公式法

版权声明
返回顶部